In silico identification of the genes for sperm-egg interaction in the internal fertilization of the newt Cynops pyrrhogaster.
نویسندگان
چکیده
A specific sperm-egg interaction in the oviductal matrix is crucial for internal fertilization of the red-bellied newt, Cynops pyrrhogaster. An understanding of the molecular basis of this interaction is expected to elucidate the evolutionary history of internal fertilization in amphibians. Recently, deep sequencing technology has provided global gene information even in nonmodel animals, allowing us to understand specific features of the molecular mechanisms underlying fertilization in C. pyrrhogaster. In the present study, we screened de novo assembled RNAseq from ovary, testis, and oviduct samples in C. pyrrhogaster and identified the base sequences encoding zona pellucida (ZP) proteins, voltage-dependent Ca(2+) channels, and cysteine-rich secretory proteins (CRISPs), which respectively are sperm receptors for egg envelopes, major mediators of sperm intracellular signaling, and expected extracellular modulators for sperm function in the female reproductive tract. In the ovary, ZP homologues of all six subgroups were found, including a ZP1 homologue that was newly found in amphibians, a ZP4 homologue, and six ZPC homologues. The unique combination of ZP proteins suggests a new mechanism for sperm binding to egg envelopes in the internal fertilization of C. pyrrhogaster. In the testis, CaV1.1, 1.2, and 3.2, which are L- and T-type voltage-dependent Ca(2+) channels, were found as potential mediators for the internal fertilization-specific sperm-egg interaction. We also found CRISP 2 in the oviduct, which is speculated to participate in the sperm-egg interaction. These results indicate that the de novo assembled RNAseq is a powerful tool allowing analysis of the specific sperm-egg interactions in C. pyrrhogaster.
منابع مشابه
Identification of the sperm motility-initiating substance in the newt, Cynops pyrrhogaster, and its possible relationship with the acrosome reaction during internal fertilization.
Motility initiation is a key event during internal fertilization of female-stored sperm, although the underlying mechanisms remain unclear. In internally fertilizing urodeles, quiescent sperm initiate motility on the surface of the egg-jelly, a thick extracellular matrix that accumulates around the egg in oviduct. By immunizing mice with egg-jelly extracts, we successfully generated an alpha34 ...
متن کاملSperm Proteases that May Be Involved in the Initiation of Sperm Motility in the Newt, Cynops pyrrhogaster
A protease of sperm in the newt Cynops pyrrhogaster that is released after the acrosome reaction (AR) is proposed to lyse the sheet structure on the outer surface of egg jelly and release sperm motility-initiating substance (SMIS). Here, we found that protease activity in the sperm head was potent to widely digest substrates beneath the sperm. The protease activity measured by fluorescein thioc...
متن کاملA Novel Cysteine Knot Protein for Enhancing Sperm Motility That Might Facilitate the Evolution of Internal Fertilization in Amphibians
Internal fertilization ensures successful reproduction of tetrapod vertebrates on land, although how this mode of reproduction evolved is unknown. Here, we identified a novel gene encoding sperm motility-initiating substance (SMIS), a key protein for the internal fertilization of the urodele Cynops pyrrhogaster by Edman degradation of an isolated protein and subsequent reverse transcription pol...
متن کاملGene Expression Profile of CatSper3 and CatSper4 during Postnatal Development of Mouse Testis
Channel activities, particularly those of calcium channels, have vital roles in the process of sperm maturation, motility and sperm-egg interaction. A group of the recently discovered ion channels associated with these processes is four novel channel-like proteins known as CatSper (cation channel sperm) gene family. CatSper1 and CatSper2 show sperm specific expression patterns. However, neither...
متن کاملEvidence that the voltage-dependent component in the fertilization process is contributed by the sperm.
To investigate the mechanisms that account for the voltage dependence of fertilization and provide an electrical block to polyspermy, we studied cross-fertilizations between three species of amphibians having different degrees of voltage dependence. Anurans, such as the toad Bufo japonicus, as well as the primitive urodele Hynobius nebulosus, have voltage-dependent fertilization; other urodeles...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The International journal of developmental biology
دوره 58 10-12 شماره
صفحات -
تاریخ انتشار 2014